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I. INTRODUCTION 
The Internet is commonly thought to be the medium for people communicating with websites, sharing 

files, streaming audio and video, and other uniquely human activities. However, there are other users of the 

Internet, making demands of its resources. Kevin Ashton, co-founder of the Auto-ID Center at MIT, is credited 

with first using the phrase “The Internet of Things.” He described “things” such as embedded devices using the 

same shared infrastructure as humans, noting that computer processors are found in home appliances, all types 

of vehicles, and many other places. The number of these devices is larger than the number of people using the 

Internet. Systems with such devices communicating on the Internet are often called “Machine-to-Machine” 

(M2M) applications.It is critical to study M2M applications in order to understand their behavior, and in 

particular, their impact on the infrastructure of the Internet. One such class of systems is vehicle-tracking 

applications. These applications require both “wired” Internet resources, as well as the wide-area wireless 

communications infrastructure operated by cellular carriers.Today,“smartphones” are common in the popular 

consciousness, but less visible are vehicles and other mobile assets (e.g., pallets, rail cars, etc.) that use basically 

the same technology for capturing local information and reporting it to aggregation points for analysis. These 
systems must be engineered for scalability and reliability, taking into consideration their future growth and 

demand on communications infrastructure.Key to understanding the communications requirements of M2M 

applications is an analysis of the message traffic generated by embedded devices. Typically, their behavior may 

be defined in probabilistic terms using one of many models describing the frequency of message arrival, 

potential for collisions, and duration of “bursts” of messages [1]. Such models have various parameters that map 

their theoretical characteristics to specific operational conditions. It is important to choose the correct model, as 

well as the right values for the parameters that govern it. In doing so, one attribute of the message traffic with 

important implications for the system’s behavior is the “Hurst exponent” [2].This paper analyzes the long-term 

dependence and self-similarity characteristics of four commercial vehicle tracking applications by using the 

Hurst exponent. Each application has from several hundred to several thousand vehicles, and the dataset for 

each of them includes message arrival counts collected over up to six months. Five different methods are used 
and compared in this analysis.The organization of the remaining sections of this paper is as follows: 

Section 2 provides background on the Hurst exponent, briefly describing its development and use.
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Then Section 3 reviews a cross-section of related works that elaborate on or apply the Hurst exponent 

in contexts similar to M2M applications.A description of the vehicle-tracking applications studied is presented 

in Section 4, followed by the results of the Hurst analysis of these systems in Section 5 using several estimation 

methods.And finally, Section 6 summarizes the conclusions of the analysis and outlines future work. 

 

II. BACKGROUND 
The Hurst exponent represents an estimated measure of “long-range dependence” (LRD) or “self-

similarity” of time-series data. It is named for Harold Edwin Hurst who first introduced the concept in the field 

of hydrology [2]. In the 1950s, he introduced the “Rescaled Range Statistic” (R/S) as a measure of the 

variability of a given time-series by finding the rescaled range (R) of values and dividing it by the standard 

deviation (S).The rescaled range for a time-series X = {x1 . . . xn} is defined as the difference between maximum 

and minimum of the mean-adjusted range series for a given sub-sequence of X given a length t = 1...n and an 

offset i = 0 . . . (n − t):  
  

 Thus (R/S)i
t for a sub-sequence of X is defined as follows: 

 
 Note that when t = n, then I = {0} and (R/S)0

t = (R/S)n. Furthermore, it is convenient to consider only 

the expectation of (R/S)i
t as follows: 

 

 Hurst found that the expectation of (R/S) as the time scale increases approaches the product of some 

constant C and n to the power of another constant H as follows: 

 

 In this form, the exponent H can range between 0 and 1. Values of H such that 0.5 < H < 1 result from 

time series values having a tendency to continue in the same direction as other recent values; thus exhibiting 

“long-term memory” in its behavior. Values of H such that 0 < H < 0.5 are found for time series that are 
strongly “mean regressive.” In between, a value of 0.5 suggests uncorrelated, random values with no tendency 

to increase of decrease based on prior history.H can be estimated as the slope of the least-squares fit of the 

expectation of (R/S) for exponentially larger values of t up to n plotted on the log/log scale. Figure 1 illustrates 

the boundaries of this range with several reference examples. For each example having 216 samples, the graph 

shows values for the (R/S)n for values of n = 2i where i = 1...16, plotting the results on a log/log scale: 
 

 A simple monotonically-increasing number sequence from 1 to 216 is fully self-similar at all scale levels, 

and as expected, shows a slope of 1. 

 216 random samples shows a slope 0.5. 

 A set of 216 samples toggling between 1 and -1, 

thus always regressing toward a mean of 0, likewise shows a slope of 0. 
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Figure 1: Three reference examples of (R/S) values on a log/log scale 

whose slopes correspond to H values of 1, 0.5, and 0 

 
 Note that as an estimate of H, the slope of the log/log plot of (R/S) values can be highly influenced by 

the choices of t used. Figure 1 provides a hint of this fact, since the first few (R/S) values in the examples for 

slopes 0.5 and 0 trend slightly differently than the rest. Section 5 will elaborate on this. Starting in the late 

1960s, Mandelbrot related the Hurst exponent to the “roughness” of a time series [3][4]. In his work with 

fractals, which are known to exhibit high self-similarity at many (or all) scales, he found that higher H values 

occur with “smoother” shapes, whereas lower H values correspond to shapes that are more “wild” or “rough.”In 

the early days of the Internet, Leland et. al used an analysis of the Hurst parameter applied to Ethernet data 

communications [5]. They found that the “burstiness” of such data traffic appeared to occur equally at small and 

large time scales, similar to Mandelbrot’s fractals. This discovery was significant because the LRD indicative 

of such behavior is not consistent with a “memoryless” Poisson process that had been used by the 

telecommunications industry in the past to model the occurrence of telephone calls for capacity planning [5]. In 
the early 1990s, the Poisson model had been used by many in industry and government around the world when 

forecasting long-term Internet growth planning. In a special joint publication by both the IEEE and ACM, 

they successfully brought attention to the greater capacity requirements that such self-similar communications 

would demand [5]. 

 

III. RELATED WORK 
Many methods have been studied for calculating the Hurst exponent using alternatives to (R/S). 

As a contributor to the aforementioned study led by Leland, Taqqu, along with Levy, had previously 

investigated several Hurst estimators, including aggregated variance, periodigrams, various Whittle methods, 
and even simple visual observation [6].Later, Taqqu et. al analyzed additional methods [7] such as the 

eponymous Higuchi estimator [8] and “Residuals of Regression” by Peng [9].More recently, Jones and Shen 

developed a method of estimating H by looking at level crossings for faster calculation [10].Overall, the various 

available methods exhibit strengths and weaknesses based on the type of data being considered. While (R/S) is 

more computationally expensive than many others with a time-complexity of O(n2), it is generally recognized as 

the standard.Since Leland et. al, there have been many studies of the LRD qualities of data communications 

involving the Hurst exponent.Nash and Ragsdale used an analysis of the Hurst exponent for critical systems as 

part of their characterization of systems communications as a precursor to establishing criteria for an automated 

intrusion detection method [11].Idris et. al used a Hurst exponent estimate as a reference against which to detect 

anomalies in a system [12]. Their method focused on determining an effective window size of recent traffic 

activity, calculating a current H and comparing it to an expected value.Park et. al explored the LRD qualities of 
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several TCP/IP data sets representing significantly higher data rates than those considered earlier by Leland et. 

al [13]. They used a variety of methods to estimate the Hurst exponent and confirmed high values (i.e., between 

0.8 and 0.9) for such data.Clegg used the Hurst exponent to help establish the parameters of a Markov-

modulated process for simulating self-similar network traffic, overcoming the kinds of limitations found with 

past models as identified by Leland et. Al [1].Dobrescu et. al examined how the self-similarity of various 

networks, such as LANs and WANs, are affected by their topology, exploring multiple methods for measuring 
H, as well as related statistical measures [14]. 

 

IV. TARGET SYSTEMS 
The datasets analyzed in this paper come from four commercial vehicle-tracking applications used by 

both business and consumer users. 
 

Table 1 identifies each application by a letter “A” through “D,” along with the number of vehicles it 

had, and the total time span of the message count data collected. Each dataset contains a progressively larger 

number of device-attached vehicles with data collected for at least over three months, and in most cases over six 

months. The largest dataset, “D,” saw an increase in the number of devices by a factor of three over the six 

month period.For the purpose of this study, the primary focus concerns two key elements of these applications: 

First, there is an embedded processor and wireless GSM radio, or “device.” Messages are sent as single UDP/IP 

packets over GPRS to report both periodic and exception-based information about the condition of an attached 

vehicle.The devices in the study come from several manufacturers, including Enfora (now Novatel), Xirgo, and 

Calamp. The duty cycle of the devices can vary across applications, but the typical configuration involves an 

hourly report of location when the attached vehicle is powered off and a report of location every minute when it 
is on.In addition, the devices may also report their status when the vehicle is powered on or off, crosses a 

predefined speed threshold, enters or leaves a predefined “geofence,” or detects a state change for an attached 

digital and/or analog sensor.Second, there is an aggregation service known to the devices to which they send 

their various messages. This service receives, and in some cases acknowledges, messages from the different 

device types, each having its own data format, and normalizes/conditions the information contained in the 

message for subsequent analytical processes.Each application has a similar service configuration, but typically, 

is comprised of one or more virtual servers hosted in a “private cloud” in sufficient number and with sufficient 

allocation of resources (e.g., CPU, RAM, SAN) to handle the operational demands of the overall system. 

 
Figure 2: Message counts per minute categorized by ignition on vs. off 

for a 2-day period from dataset “A” 
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Figure 2 shows a subset of data from dataset “A” having 175 devices representing a fleet of vehicles for a 

construction company. The horizontal axis represents a two-day period with one-minute resolution, and the 

vertical axis shows the aggregated number of messages received in one minute. The red ’x’s represent the 

counts per minute from devices with their ignition off, whereas the blue squares represent message counts from 

devices with their ignition on. The larger magnitude of “ignition on” counts reflects the higher reporting rate for 

this condition. A clear diurnal cycle is evident given that the vehicles are active with their ignition on during the 
course of their business day, with little or no activity during the night-time hours.For dataset “A” the ratio of 

messages with ignition on to those with ignition off was approximately 3 to 1. Histograms of the distribution of 

these types of messages in Figure 3 depict a strong half-normal frequency distribution, with the “ignition on” 

messages exhibiting a Gaussian mixture model. The high values on the left side of the graph for devices with 

ignition on indicates that a small percentage of the population of devices are on at the same time. 

 
Figure 3: Distribution of message counts by minute for 175 vehicles with ignition on and off 

 

V. RESULTS 
 For the purpose of this study, values of (R/S) were calculated for the per-minute message counts of 

each application up to six months at intervals for powers of 2 from 21 to 218 minutes in duration.Since Figure 2 

showed visually different message arrival characteristics for “ignition on” vs. “ignition off,” the possibility 

existed that the estimate of H might be different for each type of count history. One might imagine a possible 

M2M application that only reports values for vehicles with the ignition on, or another that only reports hourly, 

along with some exceptions representing locally-detected changes in state. 

 
Figure 4: Changing slope for system “A” over differing scales for message counts 

with ignition on, off, and combined 
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Figure 4 shows three plots for (R/S) values representing only “ignition on,” “ignition off,” and all 

combined message counts for dataset “A.” Bracketing dotted reference lines with slopes 0.5 and 1 show that, at 

different time scales, the (R/S) values trend back and forth between these boundaries of the LRD/self-similar 

range for H. 

 
Figure 5: Log/log plot of averaged (R/S)n values at many time scales for each target system 

 

The same characteristic change in slope is also visible for each of the other datasets “B” through “D” as 

shown in Figure 5. Here the data shows strong LRD with slope close to 1 for time scales 21 to 211, at which point 

the slope drops closer to 0.5. Then at time scale 215, the slope again increases back closer to 1. The time scales 

of lower slope correspond to the daily and weekly periodicity of the data that are necessarily “mean regressive,” 

and as such would be expected show a decrease in the value of H accordingly. 

 

 

Table 2 summarizes the values of H using (R/S) for each dataset, emphasizing that the overall LRD 

quality of each time series remains high, despite the fact that, at some time scales, they appear less so. 

Interestingly, these periods of lower H occur at aggregation levels typically being examined by system 

operators for such applications. As a result, the casual observer might incorrectly assume the LRD for these 

applications is low.While estimating H using (R/S) is well-established as the standard, it is nevertheless 

computationally expensive as mentioned previously, and many other methods have been devised to estimate H 

more quickly [7][8][9][10].As examples of these methods, Table 2 includes results using the “Absolute 

Moment” (AM), “Aggregate Variance” (AV), “Higuchi” (Hig), and Peng’s “Residuals of Regression” (RR) 

methods from Taqqu and Levy [7] using MatLab. While these methods produced results in a few seconds or less 
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each versus up to 20 minutes using (R/S), all resulted in values of H higher than expected. Furthermore, all 

values for Higuchi and most values for Peng were found to be invalid by being greater than the maximum of 1. 

 

VI. CONCLUSIONS AND FUTURE WORK 
The systems in this study vary in number of vehicles, and while similar, are not identical in their 

purpose and behavior. However, all exhibit consistently high self-similar message frequency patterns at all 

scales measured. As a result, it should be reasonable to assume that similar system behavior would continue to 

persist at even larger scales as the systems grow.This, along with many other analyses of Internet-based 

communications systems of all types, consistently shows that they exhibit LRD characteristics. While Park et. al 

[13] found high Hurst exponent values between 0.8 and 0.9 for TCP/IP communications with its stream-oriented 

protocol overhead, the systems in this study using more simplistic UDP/IP communications, often without 

message acknowledgement, likewise have H values in the same range.Differences in aggregate shape of the data 

at time scales corresponding to days and weeks appeared to exhibit less LRD due to their “mean regressive” 

periodicity, but high LRD character remained true at both lower and higher scales.The well-established standard 

for estimating H based on (R/S) is computationally expensive, motivating the desire for alternative methods, but 
such methods, while confirming the high LRD of the systems in this study, appear to produce results too 

different from (R/S) to be equivalent.Since these systems were studied at the level of UDP packet arrival at 

“host”-level aggregation services, in cellular wireless communications, two additional layers of communications 

exist below this. For GSM networks, there is a layer of GPRS messaging and its underlying SS7 signaling 

protocol for which a similar Hurst analysis may be of value in the future. 
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